نوع مقاله : مقاله پژوهشی
نویسنده
گروه اقتصاد و مدیریت، واحد نراق، دانشگاه آزاد اسلامی، نراق، ایران
چکیده
هدف: جوامع تجاری بهطور معناداری موجب ارتقا تجارت آزاد و امنیت تجاری میشود به گونهای که پیوستن به جامعه تجاری برای توسعه بلندمدت آنها ضروری است؛ بنابراین هدف تحقیق شکلگیری جامعه تجارت بینالمللی براساس نظریه شبکه و وابستگی به منابع در نظر گرفته شد.
روششناسی پژوهش: از کشورهایی که به تجارت بینالمللی میپردازند و براساس دادههای قابل دسترس از پایگاه داده Comtrade سازمان ملل در یک دوره زمانی 1398-1384، بیست کشور بهعنوان نمونه انتخاب گردید.
یافتهها: نتایج نشان داد: 1- عامل شریک تجاری تاثیر مثبتی بر شکلگیری جوامع تجاری بینالمللی دارد یعنی زمانی که کشوری با تعداد زیادی از شرکای تجاری همکاری میکند یا موقعیت برتر در شبکه تجارت بینالمللی داشته باشد، احتمال بیشتری دارد که کشورهای دیگر جامعه یکسانی با آن کشور تشکیل دهند، 2- وقتیکه کشوری خود را وابسته به منابع کشورهای دیگر میداند، احتمال شکلگیری جامعهای مشابه با دیگر کشورها افزایش پیدا میکند و 3- موقعیت در شبکه نقش مثبتی در تنظیم روابط مابین وابستگی به منابع و جامعه تجارت بینالمللی ایفا میکند.
اصالت/ارزش افزوده علمی: کشورهایی که براساس عامل آزادی اقتصادی و تنوع کشور واردکننده، میتوانند تجارت منابع را تقویت کنند، میتوانند وابستگی خود به دیگر کشورها را کاهش دهند.
کلیدواژهها
عنوان مقاله [English]
Formation of the international trade community based on resource dependence and network theory
نویسنده [English]
- Mostafa Heidari Haratemeh
Department of Economics and Management, Naragh Branch, Islamic Azad University, Naragh, Iran
چکیده [English]
Purpose: Business communities significantly promote free trade and trade security, so that joining the business community is essential for their long-term development. Therefore, the aim of the research was to form an international trade community based on network theory and resource dependence.
Methodology: Twenty countries were selected as a sample from the countries that engage in international trade and based on the data available from the Comtrade database of the United Nations in the period of 2005-2019.
Findings: The results showed: 1) the trading partner factor has a positive effect on the formation of international trading communities, that's mean when a country cooperates with a large number of trading partners or has a dominant position in the international trade network, the probability of the country forms the same community with other countries is higher, 2) when a country considers itself dependent on the resources of other countries, the possibility of forming a similar community with other countries increases accordingly and 3) network position plays positive role in regulating the relationship between resource dependence and the international trade community.
Originality/Value: Countries that can boost resource trade based on the factor of economic freedom and diversity of the importing country can reduce their dependence on other countries.
کلیدواژهها [English]
- Trade community
- Resource dependence theory
- Network theory
- International trade
- An, H., Gao, X., Fang, W., Ding, Y., & Zhong, W. (2014). Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: a complex network approach. Applied energy, 136, 1067-1075. https://doi.org/10.1016/j.apenergy.2014.07.081
- Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical review E, 76(6), 066102. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.066102
- Brada, J. C., & Mendez, J. A. (1985). Economic integration among developed, developing and centrally planned economies: a comparative analysis. The review of economics and statistics, 67(4), 549-556. https://www.jstor.org/stable/1924798
- Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of mathematical sociology, 25(2), 163-177. https://doi.org/10.1080/0022250X.2001.9990249
- Burt, R. S. (1992). Structural holes: the social structure of competition. Harvard University Press. https://www.hup.harvard.edu/catalog.php?isbn=9780674843714
- Chang, T. Y., Hsu, T. C., & Hong, Y. W. P. (2009). Exploiting data-dependent transmission control and MAC timing information for distributed detection in sensor networks. IEEE transactions on signal processing, 58(3), 1369-1382. https://ieeexplore.ieee.org/abstract/document/5313958
- Dong, D., An, H., & Huang, S. (2017). The transfer of embodied carbon in copper international trade: an industry chain perspective. Resources policy, 52, 173-180. https://doi.org/10.1016/j.resourpol.2017.02.009
- Fan, Y., Ren, S., Cai, H., & Cui, X. (2014). The state's role and position in international trade: a complex network perspective. Economic modelling, 39, 71-81. https://doi.org/10.1016/j.econmod.2014.02.027
- Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41. https://doi.org/10.2307/3033543
- Gao, X., An, H., Fang, W., Li, H., & Sun, X. (2014). The transmission of fluctuant patterns of the forex burden based on international crude oil prices. Energy, 73, 380-386. https://doi.org/10.1016/j.energy.2014.06.028
- Zhong, W., An, H., Shen, L., Dai, T., Fang, W., Gao, X., & Dong, D. (2017). Global pattern of the international fossil fuel trade: the evolution of communities. Energy, 123, 260-270. https://ideas.repec.org/a/eee/energy/v123y2017icp260-270.html
- Garlaschelli, D., Di Matteo, T., Aste, T., Caldarelli, G., & Loffredo, M. I. (2007). Interplay between topology and dynamics in the world trade web. The European physical journal B, 57(2), 159-164. https://doi.org/10.1140/epjb/e2007-00131-6
- Guan, Q., An, H., Gao, X., Huang, S., & Li, H. (2016). Estimating potential trade links in the international crude oil trade: a link prediction approach. Energy, 102, 406-415. https://doi.org/10.1016/j.energy.2016.02.099
- Hillman, A. J., Withers, M. C., & Collins, B. J. (2009). Resource dependence theory: a review. Journal of management, 35(6), 1404-1427. https://doi.org/10.1177/0149206309343469
- Hinkelman, E. G., Shippey, K. C. (2002). Dictionary of international trade: handbook of the global trade community includes 19 key appendices. Novato, CA: World Trade Press.
- Zhong, W., An, H., Gao, X., & Sun, X. (2014). The evolution of communities in the international oil trade network. Physica a: statistical mechanics and its applications, 413, 42-52.
- Huang, S., An, H., Viglia, S., Buonocore, E., Fang, W., & Ulgiati, S. (2017). Revisiting China-Africa trade from an environmental perspective. Journal of cleaner production, 167, 553-570. https://doi.org/10.1016/j.jclepro.2017.08.171
- Brakeland, J. F., & Turner, V. (1997). Safeguard measures in international merchandise trade: a community perspective. Revue-marche commun et de l union europeenne, 454-469. (In Ferench).
- Ji, Q., Zhang, H. Y., & Fan, Y. (2014). Identification of global oil trade patterns: an empirical research based on complex network theory. Energy conversion and management, 85, 856-865.
- Kuznets, S. (1955). Economic growth and income inequality. The American economic review, 45(1), 1-28. https://www.jstor.org/stable/1811581
- Leicht, E. A., & Newman, M. E. (2008). Community structure in directed networks. Physical review letters, 100(11), 118703. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.118703
- Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: based on two-mode affiliation network. Physica a: statistical mechanics and its applications, 450, 657-669. https://doi.org/10.1016/j.physa.2016.01.017
- Linnemann, H. (1966). An econometric study of international trade flows(No. 42). Amsterdam, North-Holland. https://academic.oup.com/ej/article/77/306/366/5235645
- Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008. DOI:1088/1742-5468/2008/10/P10008
- Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298(5594), 824-827.
- Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical review E, 69(6), 066133. https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.066133
- Ozmel, U., Reuer, J. J., & Gulati, R. (2013). Signals across multiple networks: how venture capital and alliance networks affect interorganizational collaboration. Academy of management journal, 56(3), 852-866. https://journals.aom.org/doi/abs/10.5465/amj.2009.0549
- Pfeffer, J., & Salancik, G. R. (2003). The external control of organizations: a resource dependence perspective. Stanford University Press.
- Qin, Z., Zhang, J., & Wang, J. (2010). Enhanced reliable transmission control protocol for spatial information networks. International conference on space information technology 2009 (Vol. 7651, pp. 388-395). SPIE. https://doi.org/10.1117/12.855405
- Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
- Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4), 581-603.
- Schwarz, A. J., Gozzi, A., & Bifone, A. (2008). Community structure and modularity in networks of correlated brain activity. Magnetic resonance imaging, 26(7), 914-920. https://doi.org/10.1016/j.mri.2008.01.048
- Shipilov, A. V. (2009). Firm scope experience, historic multimarket contact with partners, centrality, and the relationship between structural holes and performance. Organization science, 20(1), 85-106.
- Sonora, R. J. (2008). On the impacts of economic freedom on international trade flows: asymmetries and freedom components. EFZG working paper series, (05), 1-31. https://hrcak.srce.hr/file/202163
- Tinbergen, J. (1962). Shaping the world economy: suggestions for an international economic policy. Journal of farm economics, 46(1), 271-273. https://onlinelibrary.wiley.com/doi/abs/10.2307/1236502
- Trojan, C. (1986). Milk policy and the role of the community in the international trade. Molkerei-Zeitung.
- Tzekina, I., Danthi, K., & Rockmore, D. N. (2008). Evolution of community structure in the world trade web. The European physical journal B, 63(4), 541-545.
- Vick-Majors, T. J., Priscu, J. C., & Amaral-Zettler, L. A. (2014). Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered antarctic lakes. The ISME journal, 8(4), 778-789. DOI: 1038/ismej.2013.190
- Westphal, J. D., Boivie, S., & Ming Chng, D. H. (2006). The strategic impetus for social network ties: reconstituting broken CEO friendship ties. Strategic management journal, 27(5), 425-445.
- Xia, J., Wang, Y., Lin, Y., Yang, H., & Li, S. (2018). Alliance formation in the midst of market and network: insights from resource dependence and network perspectives. Journal of management, 44(5), 1899-1925.
- Zhang, H. Y., Ji, Q., & Fan, Y. (2014). Competition, transmission and pattern evolution: a network analysis of global oil trade. Energy policy, 73, 312-322. https://doi.org/10.1016/j.enpol.2014.06.020
- Zheng, Y., & Xia, J. (2018). Resource dependence and network relations: a test of venture capital investment termination in China. Journal of management studies, 55(2), 295-319. https://doi.org/10.1111/joms.12255