نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت تولید و عملیات، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.

2 گروه تحقیق در عملیات، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبایی، تهران، ایران.

10.22105/imos.2021.288228.1101

چکیده

هدف: امروزه به دلیل پیچیدگی‌های محیط کسب‌وکار که با سطح بالایی از عدم اطمینان و ریسک همراه است، شرکت‌ها درصدد مدیریت و کاهش ریسک زنجیره تأمین خود می‌باشند. یکی از راهکارهای مقابله با ریسک‌های زنجیره تأمین، افزایش تاب‌آوری زنجیره تأمین است. برای افزایش تاب‌آوری زنجیره تأمین، لازم است قابلیت‌های مختلف آن موردتوجه قرار گیرد. یکی از مهم‌ترین قابلیت‌ها، قابلیت‌های تکنولوژیکی است. شرکت‌هایی که در قابلیت‌های تکنولوژیکی از بلوغ کافی برخوردار نیستند، نمی‌توانند چندین شیوه مدیریت ریسک را هم‌زمان اجرایی نمایند. از طرفی بسیاری از قابلیت‌های تکنولوژیکی به یکدیگر مرتبط بوده و قادر به ایجاد تأثیر متقابل بر سایر توانایی‌ها هستند. ازاین‌رو در این مقاله برای کاهش ریسک‌ها و به‌تبع آن افزایش تاب‌آوری زنجیره تأمین، پس از شناسایی شاخص‌های مربوط به قابلیت‌های تکنولوژیکی، این شاخص‌ها اولویت‌بندی شدند.
روش‌شناسی پژوهش: در ابتدا با بررسی تحقیقات انجام‌شده در حوزه تاب‌آوری زنجیره تأمین، شاخص‌های مربوط به قابلیت‌های تکنولوژیک برای افزایش تاب‌آوری زنجیره تأمین بررسی شد و فهرستی از معیارهای شناسایی‌شده در اختیار خبرگان شرکت قرار گرفت، سپس معیارهای موردنظر پس از بررسی موردمطالعه و بر اساس نظر خبرگان با روش دلفی فازی تعدیل، تائید و نهایی شد. در گام بعد بر اساس روش سو آرا شاخص‌های موردنظر وزن دهی شدند.
یافته‌ها: شاخص‌های قابلیت تکنولوژیکی همکاری، چابکی زنجیره تأمین، انعطاف‌پذیری عرضه به ترتیب به‌عنوان مهم‌ترین شاخص‌ها شناسایی گردیدند.
اصالت/ارزش افزوده علمی: با توسعه فناوری اطلاعات و لزوم تاب‌آوری زنجیره‌های تأمین، شناسایی قابلیت‌های تکنولوژیکی و تأثیر آن بر تاب‌آوری برای کاهش ریسک زنجیره تأمین ضروری است. در این مقاله ضمن شناسایی قابلیت‌های تکنولوژیکی برای افزایش تاب‌آوری زنجیره تأمین، این قابلیت‌ها اولویت‌بندی می‌گردند. همچنین استفاده تلفیقی از روش‌های دلفی فازی برای تائید شاخص‌ها و روش سوآرا منجر به استواری نتایج شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Identification and ranking technological capabilities in order to enhance resilience of the supply chain

نویسندگان [English]

  • Seyyed Jalaladdin Hosseini Dehshiri 1
  • Mojtaba Aghaei 2

1 Department of Operation and Production Management, Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, Iran.

2 Department of Operations Research, Faculty of Management and Accounting, Allameh Tabataba’i University, Tehran, Iran.

چکیده [English]

Purpose: Because of the complexity of today's business environment that are associated with high levels of uncertainty and risk, Company seeks to manage and reduce risk in their supply chain. One of the strategies to deal with supply chain risks is increasing the supply chain resiliency. To increase the resilience of the supply chain, it is necessary to be considered various capabilities. One of the most important capabilities are technological capabilities. Companies that do not have sufficient maturity in the technological capabilities cannot simultaneously implementing several ways of risk management. On the other hand, many technological capabilities related to each other and are able to interact with other abilities. Therefore, in this paper to reduce risk and consequently increase the resilience of the supply chain, after identifying indicators of technological capabilities, these indicators were prioritized.
Methodology: At first, with the review conducted research in the field of supply chain resiliency, Indicators related to technological capabilities to increase supply chain resiliency were investigated and A list of identified criteria was placed at the disposal of company experts. Then, these criteria after examining in the case study and according to the experts with the Fuzzy Delphi method were modified and finalize. In the next step, based on SWARA method relevant indicators were weighted.
Findings: Criteria of technological collaboration, supply chain agility, flexibility of supply respectively were recognized as the most important indicator.
Originality/Value: With the development of information technology and the need for supply chain resilience, identifying technological capabilities and their impact on resilience is essential to reduce supply chain risk. In this paper, while identifying technological capabilities to increase supply chain resilience, these capabilities are prioritized. Also, the combined use of fuzzy Delphi methods to confirm the indicators and SWARA method has led to the stability of the results.

کلیدواژه‌ها [English]

  • Resilience Supply Chain
  • Technological Capabilities
  • Fuzzy Delphi
  • SWARA
Aghaei, M., & Salehi Sadaghiani, J. (2019). Solutions for Removing Knowledge Management Implementation Barriers in the Supply Chain of Fast Moving Consumer Goods. IT management studies8(30), 79-114. (In Persian). DOI: 10.22054/IMS.2019.10619
Almutairi, K., Dehshiri, S. S. H., Dehshiri, S. J. H., Mostafaeipour, A., Issakhov, A., & Techato, K. (2021). A thorough investigation for development of hydrogen projects from wind energy: a case study. International journal of hydrogen energy46(36), 18795-18815. https://doi.org/10.1016/j.ijhydene.2021.03.061
Amiri, M., Hosseini Dehshiri, S. J., & Yousefi Hanoomarvar, A. (2018). Determining the optimal combination of larg supply chain strategies using swot analysis, multi-criteria decision-making techniques and game theory. Industrial management journal10(2), 221-246. (In Persian). DOI: 10.22059/imj.2018.257030.1007420
Bell, M., & Pavitt, K. (1995). The development of technological capabilities. Trade, technology and international competitiveness22(4831), 69-101.
Blackhurst, J., Dunn, K. S., & Craighead, C. W. (2011). An empirically derived framework of global supply resiliency. Journal of business logistics32(4), 374-391. https://doi.org/10.1111/j.0000-0000.2011.01032.x
Bouzon, M., Govindan, K., Rodriguez, C. M. T., & Campos, L. M. (2016). Identification and analysis of reverse logistics barriers using fuzzy Delphi method and AHP. Resources, conservation and recycling108, 182-197. https://doi.org/10.1016/j.resconrec.2015.05.021
Brusset, X., & Teller, C. (2017). Supply chain capabilities, risks, and resilience. International journal of production economics184, 59-68. https://doi.org/10.1016/j.ijpe.2016.09.008
Business Continuity Institute. (2011). Supply chain resilience. 3rd Annual Survey, Published November 2011.
Carvalho, H., Azevedo, S. G., & Cruz-Machado, V. (2012). Agile and resilient approaches to supply chain management: influence on performance and competitiveness. Logistics research4(1), 49-62. https://doi.org/10.1007/s12159-012-0064-2
Carvalho, H., Barroso, A. P., Machado, V. H., Azevedo, S., & Cruz-Machado, V. (2012). Supply chain redesign for resilience using simulation. Computers & industrial engineering62(1), 329-341. https://doi.org/10.1016/j.cie.2011.10.003
Cheng, C. H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European journal of operational research142(1), 174-186. https://doi.org/10.1016/S0377-2217(01)00280-6
Croson, R., Donohue, K., Katok, E., & Sterman, J. (2014). Order stability in supply chains: coordination risk and the role of coordination stock. Production and operations management23(2), 176-196. https://doi.org/10.1111/j.1937-5956.2012.01422.x
Dahooie, J. H., Dehshiri, S. J. H., Banaitis, A., & Binkytė-Vėlienė, A. (2020). Identifying and prioritizing cost reduction solutions in the supply chain by integrating value engineering and gray multi-criteria decision-making. Technological and economic development of economy26(6), 1311-1338. DOI: https://doi.org/10.3846/tede.2020.13534
Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management science9(3), 458-467.
Dehnavi, A., Aghdam, I. N., Pradhan, B., & Varzandeh, M. H. M. (2015). A new hybrid model using step-wise weight assessment ratio analysis (SWARA) technique and adaptive neuro-fuzzy inference system (ANFIS) for regional landslide hazard assessment in Iran. Catena135, 122-148. https://doi.org/10.1016/j.catena.2015.07.020
Georgiadis, P., & Athanasiou, E. (2013). Flexible long-term capacity planning in closed-loop supply chains with remanufacturing. European journal of operational research225(1), 44-58. https://doi.org/10.1016/j.ejor.2012.09.021
Gulati, R., Nohria, N., & Zaheer, A. (2000). Strategic networks. Strategic management journal21(3), 203-215. https://doi.org/10.1002/(SICI)1097-0266(200003)21:3<203::AID-SMJ102>3.0.CO;2-K
Heidary Dahooie, j., & Hosseini Dehshiri, S. J. (2019). Identify and prioritize strategies to reduce plant power equipments supply chain costs through value engineering.  Journal of industrial management studies 17(52), 125-152. (In Persian). DOI: https://www.sid.ir/en/journal/ViewPaper.aspx?id=663301
Hohenstein, N. O., Feisel, E., Hartmann, E., & Giunipero, L. (2015). Research on the phenomenon of supply chain resilience: a systematic review and paths for further investigation. International journal of physical distribution & logistics management, 45(1/2), 90-117.
Hoseini Dehshiri, S. J., & Aghaei, M. (2020). Identifying and prioritizing human resources risks through the combination of swara and gray ARAS. Journal of human resource management10(1), 53-78. (In Persian). DOI: 10.22034/JHRS.2020.105969
Hosseini Dehshiri, S. J. (2019). Using gray numbers theory in multi-attribute decision making methods for the evaluation the risk of outsourcing of information technology projects. IT management studies7(28), 167-198. (In Persian). DOI: 10.22054/IMS.2019.10243
Hosseini Dehshiri, S. J., Aghaei, M., & Taghavifard, M. T. (2018). Schematic design of hotel recommendation systems by user precedence on twitter. Journal of business intelligence management studies, 7(25), 119-146. (In Persian), DOI: 10.22054/IMS.2018.9742
Huang, E., & Goetschalckx, M. (2014). Strategic robust supply chain design based on the Pareto-optimal tradeoff between efficiency and risk. European journal of operational research237(2), 508-518. https://doi.org/10.1016/j.ejor.2014.02.038
Hudnurkar, M., Jakhar, S., & Rathod, U. (2014). Factors affecting collaboration in supply chain: a literature review. Procedia-social and behavioral sciences133, 189-202. https://doi.org/10.1016/j.sbspro.2014.04.184
Iammarino, S., Piva, M., Vivarelli, M., & Von Tunzelmann, N. (2009). Technological capabilities and patterns of cooperation of UK firms: a regional investigation. IZA discussion paper, 4129. DOI: http://nbn-resolving.de/urn:nbn:de:101:1-20090513272
Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy sets and systems55(3), 241-253.
Jafarian, M., & Bashiri, M. (2014). Supply chain dynamic configuration as a result of new product development. Applied mathematical modelling38(3), 1133-1146. https://doi.org/10.1016/j.apm.2013.08.025
Jayant, A., & Ghagra, H. S. (2013). Supply chain flexibility configurations: perspectives, empirical studies and research directions. International journal of supply chain management2(1), 21-29.
Jüttner, U., & Maklan, S. (2011). Supply chain resilience in the global financial crisis: an empirical study. Supply chain management: an international journal. 16(4), 246-259.  https://doi.org/10.1108/13598541111139062
Kalbasi, R., Jahangiri, M., Mosavi, A., Dehshiri, S. J. H., Dehshiri, S. S. H., Ebrahimi, S., ... & Karimipour, A. (2021). Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustainable energy technologies and assessments45, 101097. https://doi.org/10.1016/j.seta.2021.101097
Kannan, D., de Sousa Jabbour, A. B. L., & Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: using fuzzy TOPSIS applied to a Brazilian electronics company. European journal of operational research233(2), 432-447. https://doi.org/10.1016/j.ejor.2013.07.023
Keršuliene, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step‐wise weight assessment ratio analysis (SWARA). Journal of business economics and management11(2), 243-258.
Khalili-Damghani, K., & Tavana, M. (2013). A new fuzzy network data envelopment analysis model for measuring the performance of agility in supply chains. The international journal of advanced manufacturing technology69(1-4), 291-318. https://doi.org/10.1007/s00170-013-5021-y
Lall, S. (1992). Technological capabilities and industrialization. World development20(2), 165-186. https://doi.org/10.1016/0305-750X(92)90097-F
Lin, H. F. (2014). Understanding the determinants of electronic supply chain management system adoption: Using the technology–organization–environment framework. Technological forecasting and social change86, 80-92. https://doi.org/10.1016/j.techfore.2013.09.001
Matook, S., Lasch, R., & Tamaschke, R. (2009). Supplier development with benchmarking as part of a comprehensive supplier risk management framework. International journal of operations & production management, 29(3), 241-267. https://doi.org/10.1108/01443570910938989
Meyr, H., Wagner, M., & Rohde, J. (2015). Structure of advanced planning systems. In Supply chain management and advanced planning (pp. 99-106). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55309-7_5
Mostafaeipour, A., Dehshiri, S. J. H., Dehshiri, S. S. H., & Jahangiri, M. (2020). Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan. International journal of hydrogen energy45(58), 33169-33184. https://doi.org/10.1016/j.ijhydene.2020.09.135
Pereira, C. R., Christopher, M., & Da Silva, A. L. (2014). Achieving supply chain resilience: the role of procurement. Supply chain management: an international journal, 19(5/6), 626-642. DOI: https://doi.org/10.1108/SCM-09-2013-0346
Pettit, T. J., Croxton, K. L., & Fiksel, J. (2013). Ensuring supply chain resilience: development and implementation of an assessment tool. Journal of business logistics34(1), 46-76. https://doi.org/10.1111/jbl.12009
Pettit, T. J., Fiksel, J., & Croxton, K. L. (2010). Ensuring supply chain resilience: development of a conceptual framework. Journal of business logistics31(1), 1-21. https://doi.org/10.1002/j.2158-1592.2010.tb00125.x
Ponomarov, S. Y., & Holcomb, M. C. (2009). Understanding the concept of supply chain resilience. The international journal of logistics management. 31(1), 1-21. https://doi.org/10.1002/j.2158-1592.2010.tb00125.x
Qrunfleh, S., & Tarafdar, M. (2013). Lean and agile supply chain strategies and supply chain responsiveness: the role of strategic supplier partnership and postponement. Supply chain management: an international journal, 18(6), 571-582. https://doi.org/10.1108/SCM-01-2013-0015
Rajesh, R. (2016). Forecasting supply chain resilience performance using grey prediction. Electronic commerce research and applications20, 42-58. https://doi.org/10.1016/j.elerap.2016.09.006
Rajesh, R. (2017). Technological capabilities and supply chain resilience of firms: A relational analysis using Total Interpretive Structural Modeling (TISM). Technological forecasting and social change118, 161-169. https://doi.org/10.1016/j.techfore.2017.02.017
Rajesh, R., & Ravi, V. (2015). Modeling enablers of supply chain risk mitigation in electronic supply chains: A Grey–DEMATEL approach. Computers & Industrial Engineering87, 126-139. https://doi.org/10.1016/j.cie.2015.04.028
Sáenz, M. J., & Revilla, E. (2014). Creating more resilient supply chains. MIT Sloan management review55(4), 22-24.
Sheffi, Y. (2005). Building a resilient supply chain. Harvard Business Review, 1(8), 1-12.
Taghavi, A., & Chinnam, R. B. (2014). Assortment planning of automotive products with considerations for economic and environmental impacts of technology selection. Journal of cleaner production70, 132-144. https://doi.org/10.1016/j.jclepro.2014.02.004
Tang, C. S. (2006). Robust strategies for mitigating supply chain disruptions. International journal of logistics: research and applications9(1), 33-45. https://doi.org/10.1080/13675560500405584
Wieland, A., & Wallenburg, C. M. (2013). The influence of relational competencies on supply chain resilience: a relational view. International journal of physical distribution & logistics management. International journal of physical distribution & logistics management, 43(4), 300-320. https://doi.org/10.1108/IJPDLM-08-2012-0243
Yang, Y., & Xu, X. (2015). Post-disaster grain supply chain resilience with government aid. Transportation research part E: logistics and transportation review76, 139-159. https://doi.org/10.1016/j.tre.2015.02.007
Zhang, J., Gou, Q., Liang, L., & Huang, Z. (2013). Supply chain coordination through cooperative advertising with reference price effect. Omega41(2), 345-353. https://doi.org/10.1016/j.omega.2012.03.009