Document Type : Original Article


Department of Economics and Management, Naragh Branch, Islamic Azad University, Naragh, Iran


Purpose: Business communities significantly promote free trade and trade security, so joining the business community is essential for long-term development. Therefore, the research aimed to form an international trade community based on network theory and resource dependence.
Methodology: Twenty countries were selected as a sample from the countries that engage in international trade based on the data available from the Comtrade database of the United Nations from 2005 to 2019.
Findings: The results showed: 1) the trading partner factor has a positive effect on the formation of international trading communities, that when a country cooperates with a large number of trading partners or has a dominant position in the international trade network, the probability of the country forms the same community with other countries is higher, 2) when a country considers itself dependent on the resources of other countries, the possibility of forming a similar community with other countries increases accordingly and 3) network position plays positive role in regulating the relationship between resource dependence and the international trade community.
Originality/Value: Countries that can boost resource trade based on the economic freedom and diversity of the importing country can reduce their dependence on other countries.


  • An, H., Gao, X., Fang, W., Ding, Y., & Zhong, W. (2014). Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: a complex network approach. Applied energy136, 1067-1075.
  • Barber, M. J. (2007). Modularity and community detection in bipartite networks. Physical review E76(6), 066102.
  • Brada, J. C., & Mendez, J. A. (1985). Economic integration among developed, developing and centrally planned economies: a comparative analysis. The review of economics and statistics, 67(4), 549-556.
  • Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of mathematical sociology25(2), 163-177.
  • Burt, R. S. (1992). Structural holes: the social structure of competition. Harvard University Press.
  • Chang, T. Y., Hsu, T. C., & Hong, Y. W. P. (2009). Exploiting data-dependent transmission control and MAC timing information for distributed detection in sensor networks. IEEE transactions on signal processing58(3), 1369-1382.
  • Dong, D., An, H., & Huang, S. (2017). The transfer of embodied carbon in copper international trade: an industry chain perspective. Resources policy52, 173-180.
  • Fan, Y., Ren, S., Cai, H., & Cui, X. (2014). The state's role and position in international trade: a complex network perspective. Economic modelling39, 71-81.
  • Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35-41.
  • Gao, X., An, H., Fang, W., Li, H., & Sun, X. (2014). The transmission of fluctuant patterns of the forex burden based on international crude oil prices. Energy73, 380-386.
  • Zhong, W., An, H., Shen, L., Dai, T., Fang, W., Gao, X., & Dong, D. (2017). Global pattern of the international fossil fuel trade: the evolution of communities. Energy123, 260-270.
  • Garlaschelli, D., Di Matteo, T., Aste, T., Caldarelli, G., & Loffredo, M. I. (2007). Interplay between topology and dynamics in the world trade web. The European physical journal B57(2), 159-164.
  • Guan, Q., An, H., Gao, X., Huang, S., & Li, H. (2016). Estimating potential trade links in the international crude oil trade: a link prediction approach. Energy102, 406-415.
  • Hillman, A. J., Withers, M. C., & Collins, B. J. (2009). Resource dependence theory: a review. Journal of management35(6), 1404-1427.
  • Hinkelman, E. G., Shippey, K. C. (2002). Dictionary of international trade: handbook of the global trade community includes 19 key appendices. Novato, CA: World Trade Press.
  • Zhong, W., An, H., Gao, X., & Sun, X. (2014). The evolution of communities in the international oil trade network. Physica a: statistical mechanics and its applications413, 42-52.
  • Huang, S., An, H., Viglia, S., Buonocore, E., Fang, W., & Ulgiati, S. (2017). Revisiting China-Africa trade from an environmental perspective. Journal of cleaner production, 167, 553-570.
  • Brakeland, J. F., & Turner, V. (1997). Safeguard measures in international merchandise trade: a community perspective. Revue-marche commun et de l union europeenne, 454-469. (In Ferench).
  • Ji, Q., Zhang, H. Y., & Fan, Y. (2014). Identification of global oil trade patterns: an empirical research based on complex network theory. Energy conversion and management85, 856-865.
  • Kuznets, S. (1955). Economic growth and income inequality. The American economic review45(1), 1-28.
  • Leicht, E. A., & Newman, M. E. (2008). Community structure in directed networks. Physical review letters100(11), 118703.
  • Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: based on two-mode affiliation network. Physica a: statistical mechanics and its applications450, 657-669.
  • Linnemann, H. (1966). An econometric study of international trade flows(No. 42). Amsterdam, North-Holland.
  • Blondel, V. D., Guillaume, J. L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment2008(10), P10008. DOI:1088/1742-5468/2008/10/P10008
  • Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science298(5594), 824-827.
  • Newman, M. E. (2004). Fast algorithm for detecting community structure in networks. Physical review E69(6), 066133.
  • Ozmel, U., Reuer, J. J., & Gulati, R. (2013). Signals across multiple networks: how venture capital and alliance networks affect interorganizational collaboration. Academy of management journal56(3), 852-866.
  • Pfeffer, J., & Salancik, G. R. (2003). The external control of organizations: a resource dependence perspective. Stanford University Press.
  • Qin, Z., Zhang, J., & Wang, J. (2010). Enhanced reliable transmission control protocol for spatial information networks. International conference on space information technology 2009 (Vol. 7651, pp. 388-395). SPIE.
  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage52(3), 1059-1069.
  • Sabidussi, G. (1966). The centrality index of a graph. Psychometrika31(4), 581-603.
  • Schwarz, A. J., Gozzi, A., & Bifone, A. (2008). Community structure and modularity in networks of correlated brain activity. Magnetic resonance imaging26(7), 914-920.
  • Shipilov, A. V. (2009). Firm scope experience, historic multimarket contact with partners, centrality, and the relationship between structural holes and performance. Organization science20(1), 85-106.
  • Sonora, R. J. (2008). On the impacts of economic freedom on international trade flows: asymmetries and freedom components. EFZG working paper series, (05), 1-31.
  • Tinbergen, J. (1962). Shaping the world economy: suggestions for an international economic policy. Journal of farm economics, 46(1), 271-273.
  • Trojan, C. (1986). Milk policy and the role of the community in the international trade. Molkerei-Zeitung.
  • Tzekina, I., Danthi, K., & Rockmore, D. N. (2008). Evolution of community structure in the world trade web. The European physical journal B63(4), 541-545.
  • Vick-Majors, T. J., Priscu, J. C., & Amaral-Zettler, L. A. (2014). Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered antarctic lakes. The ISME journal8(4), 778-789. DOI: 1038/ismej.2013.190
  • Westphal, J. D., Boivie, S., & Ming Chng, D. H. (2006). The strategic impetus for social network ties: reconstituting broken CEO friendship ties. Strategic management journal27(5), 425-445.
  • Xia, J., Wang, Y., Lin, Y., Yang, H., & Li, S. (2018). Alliance formation in the midst of market and network: insights from resource dependence and network perspectives. Journal of management44(5), 1899-1925.
  • Zhang, H. Y., Ji, Q., & Fan, Y. (2014). Competition, transmission and pattern evolution: a network analysis of global oil trade. Energy policy73, 312-322.
  • Zheng, Y., & Xia, J. (2018). Resource dependence and network relations: a test of venture capital investment termination in China. Journal of management studies55(2), 295-319.