Document Type : Original Article


1 Department of Financial Engineering, Faculty of Economic, Management and Accounting, Yazd University, Yazd, Iran.

2 Department of Finance and Accounting, Faculty of Management and Economics, Yazd University, Yazd, Iran.


Purpose: With the development of science and technology, large volumes of structured, semi-structured, and unstructured data are generated daily at breakneck speeds from various sources. This data generated by different users share many common patterns that can be filtered and analyzed to make recommendations for a product, goods, or service of interest to users. Recommender systems are software tools that provide suggestions to users based on their needs. One of the critical issues in recommender systems is providing personalized advice that fits the users' mood.
Methodology: In this research, with a bibliometric approach using the bibliometric library in R software, all the research done on applying recommended systems in personalization is reviewed.
Findings: Using the bibliometrics approach while defining recommender systems and their types, we presented an overview of the personalization field and different kinds of personalization. We also discussed the personalization process and described recommender systems as an integral part. Then, the challenges of implementing recommendation systems will be discussed, and finally, the areas in which the problem of personalization of recommendation systems can be raised.
Originality/Value: The present study, with a comprehensive review of all research in this field, can help researchers imagine and select appropriate methods for classifying and analyzing data as a toolbox for using recommender systems in personalization.


Adomavicius, G., & Tuzhilin, A. (2001). Using data mining methods to build customer profiles. Computer34(2), 74-82. DOI: 10.1109/2.901170
Adomavicius, G., & Tuzhilin, A. (2002). An architecture of e-Butler: a consumer-centric online personalization system. International journal of computational intelligence and applications2(03), 313-327.
Adomavicius, G., & Tuzhilin, A. (2005 a). Personalization technologies: a process-oriented perspective. Communications of the ACM48(10), 83-90.
Adomavicius, G., & Tuzhilin, A. (2005b). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering17(6), 734-749. DOI: 10.1109/TKDE.2005.99
Adomavicius, G., Huang, Z., & Tuzhilin, A. (2008). Personalization and recommender systems. In state-of-the-art decision-making tools in the information-intensive age (pp. 55-107). INFORMS.
Adomavicius, G., Sankaranarayanan, R., Sen, S., & Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM transactions on information systems (TOIS)23(1), 103-145.
Adomavicius, G., Tuzhilin, A., & Zheng, R. (2011). REQUEST: a query language for customizing recommendations. Information systems research22(1), 99-117.
Antoniou, G., & Van Harmelen, F. (2004). Web ontology language: Owl. In Handbook on ontologies (pp. 67-92). Springer, Berlin, Heidelberg.
Aria, M., & Cuccurullo, C. (2017). Bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of informetrics11(4), 959-975.
Augstein, M., & Neumayr, T. (2019). 3. Automated personalization of input methods and processes. In Personalized human-computer interaction (pp. 67-102). De Gruyter Oldenbourg.
Börner, K., Chen, C., & Boyack, K. W. (2003). Visualizing knowledge domains. Annual review of information science and technology37(1), 179-255.
Briner, R. B., & Denyer, D. (2012). Systematic review and evidence synthesis as a practice and scholarship tool. Handbook of evidence-based management: companies, classrooms and research, 112-129.
Broadus, R. N. (1987). Toward a definition of “bibliometrics”. Scientometrics12(5-6), 373-379.
Burger, J. M. (2010). Personality. Cengage Learning.
Cantador, I., Fernández-Tobías, I., & Bellogín, A. (2013). Relating personality types with user preferences in multiple entertainment domains. CEUR workshop proceedings. Shlomo Berkovsky.
Chausson, O. (2010). Assessing the impact of gender and personality on film preferences.  Retrieved from 
Chen, Y., Wu, C., Xie, M., & Guo, X. (2011). Solving the sparsity problem in recommender systems using association retrieval. Journal of computers, 6(9), 1896-1902. DOI:10.4304/jcp.6.9.1896-1902
Choudhary, V., Ghose, A., Mukhopadhyay, T., & Rajan, U. (2005). Personalized pricing and quality differentiation. Management science51(7), 1120-1130.
Cobo, M. J., López‐Herrera, A. G., Herrera‐Viedma, E., & Herrera, F. (2011). Science mapping software tools: review, analysis, and cooperative study among tools. Journal of the American society for information science and technology62(7), 1382-1402.
Crane, D. (1972). Invisible colleges; diffusion of knowledge in scientific communities. University of Chicago Press.
De Campos, L. M., Fernández-Luna, J. M., Huete, J. F., & Rueda-Morales, M. A. (2010). Combining content-based and collaborative recommendations: a hybrid approach based on Bayesian networks. International journal of approximate reasoning51(7), 785-799.
Fernández-Tobías, I., Braunhofer, M., Elahi, M., Ricci, F., & Cantador, I. (2016). Alleviating the new user problem in collaborative filtering by exploiting personality information. User modeling and user-adapted interaction26(2), 221-255.
Ghazanfar, M. A., & Prugel-Bennett, A. (2010, January). A scalable, accurate hybrid recommender system. 2010 third international conference on knowledge discovery and data mining (pp. 94-98). IEEE. DOI: 10.1109/WKDD.2010.117
Ghiyasi, R. (2012). Designing a proposing system for managing the sending of money (Master Thesis, Qom University). (In Persian). Retrived from
Goldenberg, D., Kofman, K., Albert, J., Mizrachi, S., Horowitz, A., & Teinemaa, I. (2021, March). Personalization in practice: methods and applications. Proceedings of the 14th ACM international conference on web search and data mining (pp. 1123-1126).
Gorgoglione, M., Palmisano, C., & Tuzhilin, A. (2006, December). Personalization in context: does context matter when building personalized customer models?. Sixth international conference on data mining (ICDM'06) (pp. 222-231). IEEE. DOI: 10.1109/ICDM.2006.125
Hagen, P., Manning, H., & Souza, R. (1999). Smart personalization, forrester research. Cambridge, MA.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM transactions on information systems (TOIS)22(1), 5-53.
Hu, R., & Pu, P. (2011, October). Enhancing collaborative filtering systems with personality information. Proceedings of the fifth ACM conference on recommender systems (pp. 197-204). Association for Computing Machinery, New York.
Jain, S., Grover, A., Thakur, P. S., & Choudhary, S. K. (2015, May). Trends, problems and solutions of recommender system. International conference on computing, communication & automation (pp. 955-958). IEEE. DOI: 10.1109/CCAA.2015.7148534
Jeckmans, A. J., Beye, M., Erkin, Z., Hartel, P., Lagendijk, R. L., & Tang, Q. (2013). Privacy in recommender systems. In Social media retrieval (pp. 263-281). Springer, London.
John, O. P., & Srivastava, S. (1999). The big-five trait taxonomy: history, measurement, and theoretical perspectives (Vol. 2, pp. 102-138). Berkeley: University of California.
Karimi, M., Jannach, D., & Jugovac, M. (2018). News recommender systems–survey and roads ahead. Information processing & management54(6), 1203-1227.
Kimball, R. (1996). The data warehouse toolkit: practical techniques for building dimensional data warehouses. John Wiley & Sons, Inc.
Lampropoulos, A. S., & Tsihrintzis, G. A. (2015). Machine learning paradigms, applications in recommender systems. Springer Cham.
Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem in recommender systems. Expert systems with applications41(4), 2065-2073.
Liu, B., & Tuzhilin, A. (2008). Managing large collections of data mining models. Communications of the ACM51(2), 85-89.
Murthi, B. P. S., & Sarkar, S. (2003). The role of the management sciences in research on personalization. Management science49(10), 1344-1362.
Nunes, M. A. S., & Hu, R. (2012, September). Personality-based recommender systems: an overview. Proceedings of the sixth ACM conference on recommender systems (pp. 5-6). Association for Computing Machinery, New York.
Patel, B., Desai, P., & Panchal, U. (2017, March). Methods of recommender system: A review. 2017 international conference on innovations in information, embedded and communication systems (ICIIECS) (pp. 1-4). IEEE. DOI: 10.1109/ICIIECS.2017.8275856
Peppers, D., & Rogers, M. (1993). The one to one future: building relationships one customer at a time. New York: Currency Doubleday.
Pereira, N., & Varma, S. L. (2019). Financial planning recommendation system using content-based collaborative and demographic filtering. In Smart innovations in communication and computational sciences (pp. 141-151). Springer, Singapore.
Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation25(4), 348-349.
Qiu, F., & Cho, J. (2006, May). Automatic identification of user interest for personalized search. Proceedings of the 15th international conference on world wide web (pp. 727-736). Association for Computing Machinery, New York.
Ramakrishnan, N., Keller, B. J., Mirza, B. J., Grama, A. Y., & Karypis, G. (2001). When being weak is brave: privacy in recommender systems. Available at
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002, January). Getting to know you: learning new user preferences in recommender systems. Proceedings of the 7th international conference on intelligent user interfaces (pp. 127-134). Association for Computing Machinery, New York.
Rentfrow, P. J., & Gosling, S. D. (2003). The do re mi's of everyday life: the structure and personality correlates of music preferences. Journal of personality and social psychology84(6), 1236-1256.
Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems handbook. In Recommender systems handbook (pp. 1-35). Springer, Boston, MA.
Riecken, D. (2000). Introduction: personalized views of personalization. Communications of the ACM43(8), 26-28.
Rousseau, D. M. (Ed.). (2012). The oxford handbook of evidence-based management. Oxford University Press.
Sarwar, B. M. (2001). Sparsity, scalability, and distribution in recommender systems. University of Minnesota.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality reduction in recommender system-a case study. Minnesota univ Minneapolis dept of computer science. DOI: 10.21236/ada439541
Schafer, J. B., Konstan, J. A., & Riedl, J. (2001). E-commerce recommendation applications. Data mining and knowledge discovery5(1), 115-153.
Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002, August). Methods and metrics for cold-start recommendations. Proceedings of the 25th annual international ACM SIGIR conference on research and development in information retrieval (pp. 253-260). Association for Computing Machinery, New York.
Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., & Warke, Y. (2002). Semantic content management for enterprises and the web. IEEE internet computing6(4), 80-87.
Surprenant, C. F., & Solomon, M. R. (1987). Predictability and personalization in the service encounter. Journal of marketing51(2), 86-96.
Taqwa, M. R. & Abdollahi, H. (2014). Investigating the effect of five major personality factors on emotional intelligence and organizational improvement, management studies (improvement). Management studies (improvement and transformation), 22(72), 48-23. (In Persian).
Tatiana, K., & Mikhail, M. (2018). Market basket analysis of heterogeneous data sources for recommendation system improvement. Procedia computer science, 136, 246–254.
Thendral, S. E., & Valliyammai, C. (2018). Understanding personalization of recommender system: a domain perspective. International journal of applied engineering research13(15), 12422-12428.
Vesanen, J., & Raulas, M. (2006). Building bridges for personalization: a process model for marketing. Journal of interactive marketing20(1), 5-20.
Zarei Matin, H. (2009). Advanced organizational behavior management. Agah Publication. (In Persian).
Zibriczky12, D. (2016). Recommender systems meet finance: a literature review. Proceedings of the 2nd International Workshop on Personalization and Recommender Systems in Financial Services. Conference conducted at the meeting of CEUR Workshop Proceedings, Bari, Italy.
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational research methods18(3), 429-472. DOI: 10.1177/1094428114562629