نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی صنایع، دانشگاه آزاد اسلامی، واحد علی آباد کتول، علی آباد کتول، ایران

چکیده

هدف: در این پژوهش الگوریتمی برای ارزیابی و رتبه‌بندی شعب یک موسسه مالی و اعتباری ارائه‌شده است که می‌تواند عملکرد را در یک بازه زمانی ارزیابی نموده و جهش یا رکود عملکرد مقطعی شعب را مدیریت نماید. در الگوریتم امکان تفکیک شاخص‌ها به دو گروه کارا و اثربخش متناسب با استراتژی سازمان، جانمایی شده است، این امر می‌تواند تصمیم‌گیری خبرگان برای انتخاب شاخص‌های مؤثر و وزندهی به آن‌ها را تسهیل نماید.
روش‌شناسی پژوهش: عملکرد شعب در مقاطع زمانی متعدد به‌صورت یک عدد فازی بیان‌شده است. از ساختار روش تاپسیس فازی در الگوریتم استفاده شده است. گام جدید گروه‌بندی معیارها برای محاسبه ارزش معیارهای وابسته به تکنیک تاپسیس فازی افزوده و فرمول محاسباتی تشریح شده است. سازوکار دلیل برتری شعب از منظر کل به جزء با استفاده از ماتریس شباهت بیان‌شده است.
یافته‌ها: با استفاده از الگوریتم ارائه‌شده، 51 شعبه بانک کشاورزی در استان سیستان و بلوچستان رتبه‌بندی شده است، در خصوص دلیل کسب امتیاز سه شعبه برتر، میانی و انتهایی جدول رتبه‌بندی بر مبنای ماتریس شباهت بحث شده است.
اصالت/ارزش‌افزوده علمی: 1-تولید ماتریس تصمیم با اعداد فازی بر مبنای عملکرد مقاطع متعدد 2- امکان‌سنجی برای تفکیک شاخص‌ها در دودسته کارا و اثربخش 3- فرموله کردن وزندهی به زیر شاخص‌ها، متناسب با میزان وابستگی به سر شاخص.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Financial and Credit Institutions Branches over a Period of Time with Dependent Criteria

نویسنده [English]

  • Rouhollah Kiani Ghaleh no

Department of Industrial Engineering, Islamic Azad University, Aliabad Katoul Branch, Aliabad Katoul, Iran

چکیده [English]

Purpose: In this research, an algorithm for evaluating and ranking the branches of a financial and credit institution is presented that can evaluate the performance in a period of time and manage the jump or stagnation of cross-sectional performance of branches. In the algorithm, the possibility of separating the criteria into two efficient and effective groups in accordance with the organization's strategy is located, this can facilitate the decision of experts to select effective and weighty indicators to them.
Methodology: The performance of branches in various time periods is expressed as a fuzzy number. The structure of the fuzzy TOPSIS method is used in the algorithm. A new step of grouping the criteria to calculate the value of the criteria related to the fuzzy TOPSIS technique has been added and the calculation formula has been described. Mechanism The reason for the superiority of the branches in terms of the whole to the part is expressed using the similarity matrix.
Findings: Using the proposed algorithm, 51 branches of Keshavarzi Bank in Sistan and Baluchestan province are ranked. The reason for scoring the top three branches, middle and bottom of the ranking table based on the similarity matrix is discussed.
Originality/Value: 1- Generating a decision matrix with fuzzy numbers based on the performance of multiple sections 2- Providing a structure for the possibility of separating indicators into two categories: efficient and effective 3- Formulating and weighing sub-indicators in proportion to the degree of dependence on the index head.

کلیدواژه‌ها [English]

  • Fuzzy number
  • Performance Evaluation
  • TOPSIS Method
  • Financial and Credit Institutions
Aghaei, M., Asadollahi, A. & Pakari, A. (2013). Ranking of Saman bank’s branches in Tehran based on customer satisfaction factors by F.M.C.D.M models. International journal of scientific management and development, 1(1), 46-61.
Akkaya, G., Turanoğlu, B., & Öztaş, S. (2015). An integrated fuzzy AHP and fuzzy MOORA approach to the problem of industrial engineering sector choosing. Expert systems with applications, 42(24), 9565-9573.
Alidade, B. & Ghasemi, M. (2015). Ranking the branches of bank Sepah of Sistan Baluchistan using balanced score card and fuzzy multi-attribute decision-making methods. Research journal of recent sciences, 4(1), 17-24.
Banet, D. (2010). Heuristic scheduling for clinical physicians. Master thesis,University of Louisville, Retrieved from https://ir.library.louisville.edu/etd/66/
Garcia, F., Guijarro, F., & Moya, I. (2010). Ranking Spanish savings banks: a multicriteria approach. Matematical and computer modelling, 52(7-8), 1058-1065.
Ghorabaee, M. K., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2017). A new multi-criteria model based on interval type-2 fuzzy sets and EDAS method for supplier evaluation and order allocation with environmental considerations. Computers & industrial engineering, 112, 156-174.
Guilherme D., Leonardo T., & Joao, M. (2019). Application of independent component analysis and TOPSIS to deal with dependent criteria in multicriteria decision problems. Expert systems with applications, 122, 262–280.
Kazemi, A. & Mousavi, J. (2013). Ranking Iranian private banks using multi-criteria decision-making methods. Journal of quantitative research in management, 3, 121-140. (in Persian).
Kumar, S., Kumar, S., & Barman, A. G. (2018). Supplier selection using fuzzy TOPSIS multi criteria model for a small-scale steel manufacturing unit. Procedia computer science133, 905-912.
Mahmudi, A. & Bagherlou, H. (2014). Ranking the bank stock with multi-criteria decision-making method. 3th Iranian management & accounting conference, Tehran university. (in Persian).
Motameni, A. R., Javadzadeh, M., & Tizfahm, M. (2010). The strategy performance evaluation of the banks. Journal of strategic management studies, 1, 159-141.
Parreiras, R. O., Kokshenev, I., Carvalho, M. O. M., Willer, A. C. M., Dellezzopolles Jr, C. F., Nacif Jr, D. B., & Santana, J. A. (2019). A flexible multicriteria decision-making methodology to support the strategic management of Science, Technology and Innovation research funding programs. European journal of operational research, 272(2), 725-739.
Pourkazemi, M. H. (2007). Grading bank branches. Economics research, 26, 305-348. (in Persian).
Rasoulinejad, E. (2009). Ranking of selected branches of Bank Saderat in Tehran using the integrated model DEAHP and ANP. M.A thesis in industrial management, University of Tehran, Tehran, Iran. (in Persian).
Seçme, N. Y., Bayrakdaroğlu, A., & Kahraman, C. (2009). Fuzzy performance evaluation in Turkish banking sector using analytic hierarchy process and TOPSIS. Expert systems with applications36(9), 11699-11709.
Shahbandarzadeh, H. (2006). Design the method evaluated the performance bank branches by using multi criteria decision making techniques. Doctoral dissertation, University of Tehran. Tehran, Iran. (in Persian).
Wang, E., Alp, N., Shi, J., Wang, C., Zhang, X., & Chen, H. (2017). Multi-criteria building energy performance benchmarking through variable clustering-based compromise TOPSIS with objective entropy weighting. Energy125, 197-210.
Wang, Z. X., Li, D. D., & Zheng, H. H. (2018). The external performance appraisal of China energy regulation: An empirical study using a TOPSIS method based on entropy weight and Mahalanobis distance. International journal of environmental research and public health15(2), 236.