نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه آموزش عالی آیندگان، تنکابن، ایران

2 دانشکده ریاضی، دانشگاه آلاباما،بیرمنگهام، آمریکا

3 دانشکده مدیریت و تجارت بین الملل، دانشگاه آکلند، نیوزلند

4 مدرسه مدیریت و بازاریابی، دانشگاه تیلور، مالزی

چکیده

هدف: استفاده از روش تحلیل پوششی داده‎ها برای تعیین کارآترین شرکت‎های پذیرفته‌شده در بورس اوراق بهادار تهران است.
روش‌شناسی پژوهش: در این پژوهش، برای تعیین شرکت‎های کارآ، سه صنعت بانکداری، پتروشیمی ‎و دارویی، مورد بررسی قرارگرفته است. سپس با استفاده از روش برنامه‎ریزی آرمانی، درصد سرمایه‎گذاری سهم هر شرکت در پرتفوی، مورد محاسبه قرار گرفته است. در این روش، یک‏بار، بازده و ریسک سهم به عنوان متغیرهای مدل و بار دیگر، متغیر نقدشوندگی، به آن‎ها اضافه شده است.
یافتهها: نتایج نشان داد که می‎توان پس از رتبه‏بندی شرکت‎‎ها، به تحلیل حساسیت آن‎ها پرداخت و با تعیین نقاط ضعف و نیز، شناخت میزان تأثیر متغیرها، برای بالا بردن سطح کارآیی شرکت‎ها اقدام نمود.
اصالت/ارزش افزوده علمی: استفاده از پرتفوی شرکت‎های کارآ برای سرمایه‎گذاری، موجب کاهش ریسک سرمایه‎گذاری و انتخاب پرتفوی مناسب می‎گردد.

کلیدواژه‌ها

عنوان مقاله [English]

Data Envelopment Analysis and Efficiency of Firms: A Goal programing Approach

نویسندگان [English]

  • Seyyed Ahmad Edalatpanah 1
  • Ramin Godarzi Karim 2
  • Bardia Khalilian 3
  • Sara Partouvi 4

1 Department of Applied Mathematics, Ayandegan Institute of Higher Education, Tonekabon, Iran.

2 Department of Mathematics, University of Alabama at Birmingham, Birmingham, USA

3 Department of Management and International Business (MIB), University of Auckland, New Zealand

4 School of Management & Marketing, Taylor’s University, Malaysia.

چکیده [English]

Purpose: Using the data envelopment analysis method to determine the most efficient companies listed on the Tehran Stock Exchange.
Methodology: In this study, three industries of banking, petrochemical and pharmaceutical have been studied to determine efficient companies. Then, using the ideal planning method, the investment percentage of each company's share in the portfolio is calculated. In this method, once the return and share risk as model variables and with another liquidity variable is added to them.
Findings: The results showed that after ranking the companies, their sensitivity can be analyzed and by determining the weaknesses and recognizing the impact of variables, to increase the efficiency of companies.
Originality/Value:Using the portfolio of efficient companies for investment leads to reducing investment risk and choosing the right portfolio.

کلیدواژه‌ها [English]

  • Data Envelopment Analysis
  • Efficiency of firms
  • Goal programing
Banker, R. D., & Thrall, R. M. (1992). Estimation of returns to scale using data envelopment analysis. European journal of operational research, 62(1), 74-84.‏
Banker, R., Natarajan, R., & Zhang, D. (2019). Two-stage estimation of the impact of contextual variables in stochastic frontier production function models using data envelopment analysis: second stage OLS versus bootstrap approaches. European journal of operational research, 278(2), 368-384.
Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial analysis journal48(5), 28-43.
Bowlin, W. F. (1999). An analysis of the financial performance of defense business segments using data envelopment analysis. Journal of accounting and public policy18(4-5), 287-310.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research2(6), 429-444.
Coelli, T., Rao, D. S. P., & Batteseo, G. E. (1998). An introduction to efficiency and productivity analysis. Kluwer academic publisher.
Dai, Z., & Wen, F. (2018). Some improved sparse and stable portfolio optimization problems. Finance research letters27, 46-52. DOI: 10.1016/j.frl.2018.02.026
Edalatpanah, S. A. (2018). Neutrosophic perspective on DEA. Journal of applied research on industrial engineering5(4), 339-345.
Edalatpanah, S. A. (2019). A data envelopment analysis model with triangular intuitionistic fuzzy numbers. International journal of data envelopment analysis7(4), 47-58.
Edalatpanah, S. A. (2020). Data envelopment analysis based on triangular neutrosophic numbers. CAAI transactions on intelligence technology, 5(2), 94-98.
Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the royal statistical society: series a (general)120(3), 253-281.
Kohl, S., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2019). The use of data envelopment analysis (DEA) in healthcare with a focus on hospitals. Health care management science22(2), 245-286.
Kalayci, C. B., Polat, O., & Akbay, M. A. (2020). An efficient hybrid metaheuristic algorithm for cardinality constrained portfolio optimization. Swarm and evolutionary computation54, 100662. DOI: 10.1016/j.swevo.2020.100662
Kutin, N., Nguyen, T. T., & Vallée, T. (2017). Relative efficiencies of ASEAN container ports based on data envelopment analysis. The Asian journal of shipping and logistics33(2), 67-77.
Mao, X., Guoxi, Z., Fallah, M., & Edalatpanah, S. A. (2020). A neutrosophic-based approach in data envelopment analysis with undesirable outputs. Mathematical problems in engineering, 4, 1-8. DOI: 10.1155/2020/7626102
Perrin, S., & Roncalli, T. (2020). Machine learning optimization algorithms & portfolio allocation. Machine learning for asset management: new developments and financial applications, 261-328. DOI: 10.13140/RG.2.2.13566.95047
Rasoulzadeh, M., & Fallah, M. (2020). An overview of portfolio optimization using fuzzy data envelopment analysis models. Journal of fuzzy extension and applications1(3), 188-197.
Soltani, M. R., Edalatpanah, S. A., Sobhani, F. M., & Najafi, S. E. (2020). A novel two-stage DEA model in fuzzy environment: application to industrial workshops performance measurement. International journal of computational intelligence systems13(1), 1134-1152.
Toma, P., Miglietta, P. P., Zurlini, G., Valente, D., & Petrosillo, I. (2017). A non-parametric bootstrap-data envelopment analysis approach for environmental policy planning and management of agricultural efficiency in EU countries. Ecological indicators83, 132-143. DOI: 10.1016/j.ecolind.2017.07.049
Wu, Y., Xu, C., Ke, Y., Tao, Y., & Li, X. (2019). Portfolio optimization of renewable energy projects under type-2 fuzzy environment with sustainability perspective. Computers & industrial engineering133, 69-82. DOI: 10.1016/j.cie.2019.04.050
Yang, W., Cai, L., Edalatpanah, S. A., & Smarandache, F. (2020). Triangular single valued neutrosophic data envelopment analysis: application to hospital performance measurement. Symmetry12(4), 588.
Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: the origins, development and future directions. European journal of operational research264(1), 1-16.