نوع مقاله : مقاله پژوهشی

نویسنده

دانشجوی دکتری مدیریت صنعتی-تولید، دانشکده مدیریت و حسابداری، دانشگاه آزاد اسلامی، واحد رشت، رشت، ایران.

چکیده

هدف: انتخاب مجموعه‌ای از تأمین‌کنندگان امری حیاتی برای موفقیت سازمان‌ها است. در سال‌های اخیر توجه و تأکید زیادی بر اهمیت انتخاب تأمین‌کنندگان شده است. انتخاب و ارزیابی مؤثر تأمین‌کنندگان مسئولیت مهمی است که باید همواره مد‌نظر مدیران خرید قرار گیرد. حیاتی بودن امر انتخاب تأمین‌کنندگان به‌واسطه اثراتی است که بر عناصر مربوط به محصولات نهایی سازمان‌ها می‌گذارد. تأمین‌کنندگان جزء حیاتی یک سازمان می‌باشند که می‌توانند اثرات زیادی بر عملکرد سازمان داشته باشند.
روش‌شناسی پژوهش: در این پژوهش مجموعه داده‌ها که حاوی مشخصات 18 تأمین‌کننده باشد. نخست از دو دیدگاه خوش‌بینانه و بدبینانه در حضور خروجی‌های نامطلوب و داده‌های نادقیق کارایی‌های تأمین‌کنندگان محاسبه می‌شود و برای شناسایی تأمین‌کننده دارای بهترین عملکرد، روش رتبه‌بندی بازه‌ای مورداستفاده قرار می‌گیرد.
یافتهها: نتایج نشان داد با توجه به اینکه روش DEA سنتی تنها بهترین کارایی نسبی گروهی از واحدهای تصمیم‌گیری را ضمن اجتناب از کارایی‌های بدبینانه اندازه‌گیری می‌کند. برای آن‌که از DEA بهترین بهره گرفته شود و از محاسبات ذهنی و پیچیده اجتناب شود از روش DEA برای مرزهای دوگانه استفاده شد.
اصالت/ارزش‌افزوده علمی: این مقاله با استفاده از رتبه‌بندی بازه‌ای و با بهره از تحلیل پوششی داده‌ها با مرزهای دوگانه در حضور خروجی‌های نامطلوب و داده‌های نا‌دقیق است. در این مقاله پیشنهاد می‌شود که محاسبه کارایی کلی و رتبه‌بندی تأمین‌کننده‌ها در مدل پیشنهادشده توسط عزیزی و همکاران (1395) هر دو کارایی را در قالب یک بازه باهم ادغام و کارایی کلی و رتبه‌بندی واحدها بر اساس روش رتبه‌بندی بازه‌ای حسین‌زاده و همکاران (2018) انجام شود.

کلیدواژه‌ها

عنوان مقاله [English]

A New Approach to Supplier Selection: Interval Ranking of DEA whit Double Frontiers

نویسنده [English]

  • Feloora Valizadeh Palang Sarae

Ph.D. Candidate of Industrial Management, Rash Branch, Islamic Azad University, Rasht, Iran

چکیده [English]

Purpose: Choosing a set of suppliers is critical to the success of organizations. In recent years, much attention has been paid to the importance of selecting suppliers. Effective selection and evaluation of suppliers is an important responsibility that should always be considered by purchasing managers. The criticality of supplier selection is due to the effects it has on elements related to the end products of organizations. Suppliers are a vital part of an organization that can have a huge impact on an organization's performance.
Methodology: In this study, a data set containing the specifications of 18 suppliers. First, the performance of suppliers is calculated from both optimistic and pessimistic perspectives in the presence of undesirable outputs and inaccurate data, and the interval ranking method is used to identify the supplier with the best performance.
Findings: The results showed that the traditional DEA method measures only the best relative efficiency of a group of decision-making units while avoiding pessimistic performance. In order to make the best use of DEA and avoid complex mental calculations, the DEA method for dual boundaries was used.
 Originality/Value: This paper uses interval ranking and data envelopment analysis with dual boundaries in the presence of undesirable outputs and inaccurate data. In this paper, it is suggested that the calculation of overall efficiency and ranking of suppliers in the model proposed by Azizi et al. (2016) integrate both performance in the form of an interval and the overall efficiency and ranking of units based on Hosseinzadeh et al. (2018) ranking method.

کلیدواژه‌ها [English]

  • Data Envelopment Analysis
  • double frontier imprecise data
  • interval ranking
  • Supplier selection
  • Undesirable outputs
Abbaszadeh Tavassoli, S., Avakh Darestani, S., & Abbaszadeh Tavassoli, M. (2017). Green supplier evaluation and selection using TOPSIS & DEMATEL (case study: Fulad Gilan company). Factualy of humantities, 12(39), 15-28. (In Persian). URL: http://imj.iausdj.ac.ir/article_536674.html
Amirteimoori, A., & Khoshandam, L. (2011). A data envelopment analysis approach to supply chain efficiency. Advances in decision sciences, 1-8. https://doi.org/10.1155/2011/608324
Amirteimoori, A., Kordrostami, S., & Sarparast, M. (2006). Modeling undesirable factors in data envelopment analysis. Applied mathematics and computation180(2), 444-452.
Azadi, M., Jafarian, M., Saen, R. F., & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Computers & operations research54, 274-285.
Azizi, H. (2011). The interval efficiency based on the optimistic and pessimistic points of view. Applied mathematical modelling35(5), 2384-2393.
Azizi, H. (2012). A new approach for supplier selection in the presence of imprecise data: DEA with double frontiers. Management research in Iran, 16(2), 129-150. (In Persian). URL: http://mri.modares.ac.ir/article-19-8553-fa.html
Azizi, H. (2012). Efficiency assessment in data envelopment analysis using efficient and inefficient frontiers. IQBQ, 16(3), 153-173. (In Persian). URL: http://mri.modares.ac.ir/article-19-118-fa.html
Azizi, H., & Ajirlu, H. G. (2011). Measurement of the worst practice of decision-making units in the presence of non-discretionary factors and imprecise data. Applied mathematical modelling35(9), 4149-4156.‏
Azizi, H., & Ajirlu, S. F. (2010). Measurement of overall performances of decision-making units using ideal and anti-ideal decision-making units. Computers & industrial engineering59(3), 411-418.
Azizi, H., & Jahed, R. (2015). Supplier selection in volume discount environments in the presence of both cardinal and ordinal data: a new approach based on double frontiers DEA. IQBQ, 19(3), 191-217. URL: http://mri.modares.ac.ir/article-19-6010-fa.html
Azizi, H., Amirteimoori, A., & Kordrostami, S. (2016). A data envelopment analysis approach with efficient and inefficient frontiers for supplier selection in the presence of both undesirable outputs and imprecise data. Modern research in decision making, 1(2), 139-170. (In Persian). URL: http://journal.saim.ir/article_21122.html?lang=en
Barbarosoglu, G., & Yazgac, T. (1997). An application of the analytic hierarchy process to the supplier selection problem. Production and inventory management journal38(1), 14-21.
Ben-Israel, A., & Robers, P. D. (1970). A decomposition method for interval linear programming. Management science16(5), 374-387.
Cecchini, L., Venanzi, S., Pierri, A., & Chiorri, M. (2018). Environmental efficiency analysis and estimation of CO2 abatement costs in dairy cattle farms in Umbria (Italy): a SBM-DEA model with undesirable output. Journal of cleaner production197, 895-907.
Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research2(6), 429-444.
Chinneck, J. W., & Ramadan, K. (2000). Linear programming with interval coefficients. Journal of the operational research society51(2), 209-220.
F ̈re, R., & Grosskopf, S. (2000). Network DEA. Socio economics planning science, 4(1), 35–49.
Fallahpour, A., Olugu, E. U., Musa, S. N., Wong, K. Y., & Noori, S. (2017). A decision support model for sustainable supplier selection in sustainable supply chain management. Computers & industrial engineering105, 391-410.
Fathi, A., & Saen, R. F. (2018). A novel bidirectional network data envelopment analysis model for evaluating sustainability of distributive supply chains of transport companies. Journal of cleaner production184, 696-708.
Fazeli Farsani, M., Ziglari, F., & Asadi, Sh. (2015). Scruting the performance of commodity suppliers and contractors, supply chain gas company province Charmahal and Bakhtiari by methodology DEA. Journal of strategic management research, 21(58), 101-116. (In Persian). URL: http://smr.journals.iau.ir/article_525539.html
Ghaemi Nasab, F., & Mamizadeh Chatghayeh, S. (2013). Supplier selection using a DEA-Topsis method. International journal of data envelopment analysis, 1(1), 33-42. (In Persian). URL: https://www.sid.ir/en/journal/ViewPaper.aspx?ID=357182
Ghazanfari, M., & Riazi, A. (2003). Designing a hierarchical decision making procedure to evaluation: select and develop supplier in SCM. International journal of industrial engineering and production management (IJIE), 14(4), 211-227. (In Persian). URL: https://www.sid.ir/en/journal/ViewPaper.aspx?ID=2898
Hladík, M. (2009). Optimal value range in interval linear programming. Fuzzy optimization and decision making8(3), 283-294.
Hladík, M. (2010). Generalized linear fractional programming under interval uncertainty. European journal of operational research205(1), 42-46.
Hladık, M. (2010). On necessarily efficient solutions in interval multi-objective linear programming. In proceedings of the 25th mini-EURO conference on uncertainty and robustness in planning and decision making (pp. 1-10).
Hladík, M. (2012). Complexity of necessary efficiency in interval linear programming and multi-objective linear programming. Optimization letters6(5), 893-899.
Hosseinzadeh, A. A., Alahviranloo, T.,   Hosseinzadeh Loti, F., & Vaez-Ghasemi, M. (2018). Solving fully interval linear programming problems. (In press).
Huang, G., & Dan Moore, R. (1993). Grey linear programming, its solving approach, and its application. International journal of systems science24(1), 159-172.
Ida, M. (1999). Necessary efficient test in interval multi-objective linear programming. In proceedings of the eighth international fuzzy systems association world congress (pp. 500-504).
Inuiguchi, M., & Sakawa, M. (1995). Minimax regret solution to linear programming problems with an interval objective function. European journal of operational research86(3), 526-536.
Izadikhah, M., & Saen, R. F. (2018). Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors. Computers & operations research100, 343-367.‏
Izadikhah, M., Tavana, M., Di Caprio, D., & Santos-Arteaga, F. J. (2018). A novel two-stage DEA production model with freely distributed initial inputs and shared intermediate outputs. Expert systems with applications99, 213-230.‏
Jafarnezhad, A., & Esmaelian, M.  (2008). Evaluation and selection of supplier in supply chain in case of single sourcing with fuzzy approach. Human sciences modares, 12(4), 127. (In Persian). URL: https://www.magiran.com/paper/711900
Jahanshahloo, G. R., Vencheh, A. H., Foroughi, A. A., & Matin, R. K. (2004). Inputs/outputs estimation in DEA when some factors are undesirable. Applied mathematics and computation156(1), 19-32.
Jauhar, S. K., & Pant, M. (2017). Integrating DEA with DE and MODE for sustainable supplier selection. Journal of computational science21, 299-306.
Javadnia, A., & Gholam-abri, A. (2013). Evaluating the production materials suppliers of Saipa industrial group by using data envelopment analysis (DEA). Journal of industrial strategic management (pajouheshgar), 10(31), 43-52. (In Persian). URL:  https://www.sid.ir/en/journal/ViewPaper.aspx?ID=386169
Kahraman, C., Cebeci, U. & Ulukan, Z. (2003). Multi-criteria supplier selection using fuzzy AHP. Logistics information management, 16(6), 382–394.
Khalilzade, M., & Katebi, M. (2015). Evaluation and selection of supply chain suppliers with a combined approach of ANP, QFD and fuzzy SIR. The second international conference on management in the 21st century, Tehran. URL:https://www.civilica.com/Paper-ICMNG02-ICMNG02_009.html 
Khodakarami, M., Shabani, A., Saen, R. F., & Azadi, M. (2015). Developing distinctive two-stage data envelopment analysis models: an application in evaluating the sustainability of supply chain management. Measurement70, 62-74.‏
Kordrostami, S., & Amirteimoori, A. (2005). Un-desirable factors in multi-component performance measurement. Applied mathematics and computation, 171(2), 721-729.
Korhonen, P. J., & Luptacik, M. (2004). Eco-efficiency analysis of power plants: an extension of data envelopment analysis. European journal of operational research, 154(2), 437-446.
Kumar, A., Jain, V., & Kumar, S. (2014). A comprehensive environment friendly approach for supplier selection. Omega, 42(1), 109-123.
Lee, E. K., Ha, S., & Kim, S. K. (2001). Supplier selection and management system considering relationships in supply chain management. IEEE transactions on engineering management48(3), 307-318.
Liu, W., Zhou, Z., Ma, C., Liu, D., & Shen, W. (2015). Two-stage DEA models with undesirable input-intermediate-outputs. Omega56, 74-87.
Lodwick, W. A., & Jamison, K. D. (2003). Special issue: interfaces between fuzzy set theory and interval analysis. Fuzzy sets and systems135(1), 1-3.
Maghbouli, M., Amirteimoori, A., & Kordrostami, S. (2014). Two-stage network structures with undesirable outputs: A DEA based approach. Measurement48, 109-118.
Narasimhan, R. (1983). An analytical approach to supplier selection. Journal of purchasing and supply management, 19(4), 27–32.
Narasimhan, R., Talluri, S., & Mendez, D. (2001). Supplier evaluation and rationalization via data envelopment analysis: an empirical examination. Journal of supply chain management37(2), 28-37.
Noorizadeh, A., Mahdiloo, M., & Farzipoor Saen, R. (2013). Evaluating relative value of customers via data envelopment analysis. Journal of business & industrial marketing, 28(7), 577-588.
Nydick, R. L., & Hill, R. P. (1992). Using the analytic hierarchy process to structure the supplier selection procedure. International journal of purchasing and materials management28(2), 31-36.
Oliveira, C., & Antunes, C. H. (2007). Multiple objective linear programming models with interval coefficients–an illustrated overview. European journal of operational research181(3), 1434-1463.
Oliveira, C., & Antunes, C. H. (2009). An interactive method of tackling uncertainty in interval multiple objective linear programming. Journal of mathematical sciences161(6), 854-866.
Önüt, S., Gülsün, B., Tuzkaya, U. R., & Tuzkaya, G. (2008). A two-phase possibilistic linear programming methodology for multi-objective supplier evaluation and order allocation problems. Information sciences178(2), 485-500.
Rashidi, K., & Cullinane, K. (2019). A comparison of fuzzy DEA and fuzzy TOPSIS in sustainable supplier selection: implications for sourcing strategy. Expert systems with applications121, 266-281.
Rashidi, K., Shabani, A., & Saen, R. F. (2015). Using data envelopment analysis for estimating energy saving and undesirable output abatement: a case study in the organization for economic Co-operation and development (OECD) countries. Journal of cleaner production105, 241-252.
Razavyan, Sh., & Tohidi, M. (2010). DMUs with network structure and imprecise data. Journal of sciences (Islamic Azad university), 19(74/2), 53-60. (In Persian). URL: https://www.sid.ir/en/journal/ViewPaper.aspx?ID=273408
Rommelfanger, H., Hanuscheck, R., & Wolf, J. (1989). Linear programming with fuzzy objectives. Fuzzy sets and systems29(1), 31-48.
Saen, R. F. (2010). A decision model for selecting appropriate suppliers. International journal of advanced operations management2(1-2), 46-56.
Saen, R. F. (2010). Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. The international journal of advanced manufacturing technology51(9-12), 1243-1250.
Safaei Ghadikolaei, A., Madhoshi, M., & Jamalian, A. (2017). Explanation of affecting factors in sustainable suppliers' selection in Saipa Company. Iranian journal of supply chain management, 19(55), 32-48. (In Persian). URL: https://scmj.ihu.ac.ir/article_203617.html?lang=fa
Salehi, M., & Sayyah, M. (2017). Evaluation and selection of efficient suppliers in terms of uncertainty -the grey data envelopment analysis approach. Iranian journal of trade studies, 21(81), 181-203. (In Persian). URL: http://pajooheshnameh.itsr.ir/article_24527.html?lang=en
Sengupta, A., & Pal, T. K. (2000). On comparing interval numbers. European journal of operational research127(1), 28-43.‏
Sengupta, A., Pal, T. K., & Chakraborty, D. (2001). Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy sets and systems119(1), 129-138.
Shabanpour, H., Yousefi, S., & Saen, R. F. (2017). Future planning for benchmarking and ranking sustainable suppliers using goal programming and robust double frontiers DEA. Transportation research part D: transport and environment50, 129-143.
Shafiei Nikabadi, M., Yakideh, K., & Oveysi Omran, A. (2017). An integrated approach of DEA with a variety of outputs and windows analysis for evaluating efficiency of the power industry. Journal of industrial management perspective, 6(4), 157-180. (In Persian). URL: http://jimp.sbu.ac.ir/article_87218.html?lang=en
Shahrodi, K., & Tadriss-hasani, M. (2011). A mathematical model to select suppliers through data envelopment analysis integrated and total cost of ownership approaches (case study: value chain in Iran automotive industry).  Journal of operational research and its applications, 8(3), 71-81. (In Persian). URL: https://www.sid.ir/fa/journal/ViewPaper.aspx?id=164791
Shaocheng, T. (1994). Interval number and fuzzy number linear programming. Fuzzy sets and systems66(3), 301-306.
Shin, H., Collier, D. A., & Wilson, D. D. (2000). Supply management orientation and supplier/buyer performance. Journal of operations management18(3), 317-333.
Soyster, A. L. (1974). A duality theory for convex programming with set-inclusive constraints. Operations research22(4), 892-898.
Sueyoshi, T., & Goto, M. (2010). Should the US clean air act include CO2 emission control: examination by data envelopment analysis. Energy policy38(10), 5902-5911.
Thuente, D. J. (1980). Duality theory for generalized linear programs with computational methods. Operations research28(4), 1005-1011.